Journal of Japanese Society for Artificial Intelligence, 14(5):771-780, September, 1999.
(In Japanese, translation by Naoki Abe.)

A Short Introduction to Boosting

Yoav Freund Robert E. Schapire
AT&T Labs — Research
Shannon Laboratory
180 Park Avenue
Florham Park, NJ 07932 USA
www.research.att.com/{yoav, schapirg

{yoav, schapirg@research.att.com

Abstract
Boosting is a general method for improving the accuracy gfgiven learning algorithm.
This short overview paper introduces the boosting algeritkdaBoost, and explains the un-
derlying theory of boosting, including an explanation ofywiioosting often does not suffer
from overfitting as well as boosting’s relationship to supp@ctor machines. Some examples
of recent applications of boosting are also described.

Introduction

A horse-racing gambler, hoping to maximize his winnings, decides to create a @mppgram
that will accurately predict the winner of a horse race based on the usual inf@nn@mber of
races recently won by each horse, betting odds for each horse, etc.). osurelata program, he
asks a highly successful expert gambler to explain his betting strategy. Nasswgiy; the expert
is unable to articulate a grand set of rules for selecting a horse. On the otitemigen presented
with the data for a specific set of races, the expert has no trouble coming up‘witk af thumb”
for that set of races (such as, “Bet on the horse that has recently won theatest or “Bet on
the horse with the most favored odds”). Although such a rule of thumb, by itself, iswddyivery
rough and inaccurate, it is not unreasonable to expect it to provide predictionselsitlaast a
little bit better than random guessing. Furthermore, by repeatedly asking thé'&pparion on
different collections of races, the gambler is able to extract many rulisiofb.

In order to use these rules of thumb to maximum advantage, there are two proatand§
the gambler: First, how should he choose the collections of races presented xpehese as to
extract rules of thumb from the expert that will be the most useful? Second, once halbeed
many rules of thumb, how can they be combined into a single, highly accurate pedide?

Boostingrefers to a general and provably effective method of producing a very aequnext
diction rule by combining rough and moderately inaccurate rules of thumb in a mammkar $0

1

that suggested above. This short paper overviews some of the recent work on boostismg
especially on the AdaBoost algorithm which has undergone intense theoretical stuetypindal

testing. After introducing AdaBoost, we describe some of the basic underlying theloopsiing,
including an explanation of why it often tends not to overfit. We also describe sgpeiments
and applications using boosting.

Background

Boosting has its roots in a theoretical framework for studying machine learaltegidche “PAC”
learning model, due to Valiant [46]; see Kearns and Vazirani [32] for a good intreduictithis
model. Kearns and Valiant [30, 31] were the first to pose the question of whethexak™earn-
ing algorithm which performs just slightly better than random guessing in the Rédehean be
“boosted” into an arbitrarily accurate “strong” learning algorithm. Schd@8¢came up with the
first provable polynomial-time boosting algorithm in 1989. A year later, Freund [1&ldped
a much more efficient boosting algorithm which, although optimal in a certain seaserthe-
less suffered from certain practical drawbacks. The first experimeititstese early boosting
algorithms were carried out by Drucker, Schapire and Simard [16] on an 3RR ta

AdaBoost

The AdaBoost algorithm, introduced in 1995 by Freund and Schapire [23], solved many of the
practical difficulties of the earlier boosting algorithms, and is the focus efgaper. Pseudocode
for AdaBoost is given in Fig. 1. The algorithm takes as input a trainingaset,), . . ., (zm, Ym)
where eachr; belongs to somédomainor instance space, and eacHabel y; is in some label
setY. For most of this paper, we assuriie= {—1,+1}; later, we discuss extensions to the
multiclass case. AdaBoost calls a giweaakor base learning algorithmepeatedly in a series of
roundst = 1,...,7. One of the main ideas of the algorithm is to maintain a distribution or set of
weights over the training set. The weight of this distribution on training examgh roundt is
denotedD, (7). Initially, all weights are set equally, but on each round, the weights of iactyr
classified examples are increased so that the weak learner is forfmlis on the hard examples
in the training set.

The weak learner’s job is to findwaeak hypothesis, : X — {—1,+1} appropriate for the
distributionD,. The goodness of a weak hypothesis is measured leyrts

€, = Priup, [ht(xz’) # yi] = Z Dt(i)-
ithe (i)Y

Notice that the error is measured with respect to the distribufipon which the weak learner
was trained. In practice, the weak learner may be an algorithm that caheuaeightsD, on the
training examples. Alternatively, when this is not possible, a subset ofaherg examples can
be sampled according tO;, and these (unweighted) resampled examples can be used to train the
weak learner.

Relating back to the horse-racing example, the instancesrrespond to descriptions of horse
races (such as which horses are running, what are the odds, the track recordsludrsac etc.)

2

Given: (zy,y1),. .., (Tm,ym) Wherez; € X, y; € Y = {-1,+1}
Initialize D1 (i) = 1/m.
Fort=1,...,1"

e Train weak learner using distributiab,.
e Get weak hypothesis, : X — {—1, +1} with error

e = Priwp, [hu(x:) # yil -

1_
e Chooseay, = 11n < €t>.

€t

e Update:
L Dy(i) e~ if hy(2;) = y;
Dt+1(l) - Z X { et if ht(xz) 7é Yi
_ D,(3) exp(—ayihi(;))
Zy

whereZ, is a normalization factor (chosen so thiat, ; will be a distribution).

Output the final hypothesis:

H(z) = sign (i atht(x)> .

t=1

Figure 1: The boosting algorithm AdaBoost.

and the labelg); give the outcomes (i.e., the winners) of each race. The weak hypotheses are
the rules of thumb provided by the expert gambler where the subcollections that he examsine
chosen according to the distributi@n.

Once the weak hypothests has been received, AdaBoost chooses a paramei@s in the
figure. Intuitively,o, measures the importance that is assigndd tdNote that, > 0if ¢, < 1/2
(which we can assume without loss of generality), and dhajfets larger as;, gets smaller.

The distributionD; is next updated using the rule shown in the figure. The effect of this rule
is to increase the weight of examples misclassifiedHynd to decrease the weight of correctly
classified examples. Thus, the weight tends to concentrate on “hard” examples.

Thefinal hypothesid? is a weighted majority vote of th€ weak hypotheses whetg is the
weight assigned té;.

Schapire and Singer [42] show how AdaBoost and its analysis can be extended to haidle we
hypotheses which output real-valuedoonfidence-rategredictions. That is, for each instance
the weak hypothesis; outputs a predictioth,(z) € R whose sign is the predicted label{ or
+1) and whose magnitudé,(x)| gives a measure of “confidence” in the prediction. In this paper,
however, we focus only on the case of binafy-(, +1}) valued weak-hypothesis predictions.

- 1.0-
S -
5
Q

. @ f

S S 0.5-

= o ,

) >
©
-
e

10 100 1000 B e
1 05
rounds margin

Figure 2: Error curves and the margin distribution graph for boosting C4.5 on thedetteset as
reported by Schapire et al. [41].eft the training and test error curves (lower and upper curves,
respectively) of the combined classifier as a function of the number of rounds of boosheg. T
horizontal lines indicate the test error rate of the base classifier assvle test error of the final
combined classifieRight The cumulative distribution of margins of the training examples after 5,
100 and 1000 iterations, indicated by short-dashed, long-dashed (mostly hidden) andrseld ¢
respectively.

Analyzing the training error

The most basic theoretical property of AdaBoost concerns its ability to redudeathimg error.

Let us write the errog; of h; as% — 7. Since a hypothesis that guesses each instance’s class
at random has an error rate bf2 (on binary problems)y; thus measures how much better than
random arey,’s predictions. Freund and Schapire [23] prove that the training error (thefnauft
mistakes on the training set) of the final hypothd$is at most

I [2/l1 0] =TT~ 137 < ex0 (—2;%) | ®

t

Thus, if each weak hypothesis is slightly better than random soythaty for somey > 0, then
the training error drops exponentially fast.

A similar property is enjoyed by previous boosting algorithms. However, previgasitdims
required that such a lower boundoe known a priori before boosting begins. In practice, knowl-
edge of such a bound is very difficult to obtain. AdaBoost, on the other haadajsivein that it
adapts to the error rates of the individual weak hypotheses. This is the basis ohés-rdAda”
is short for “adaptive.”

The bound given in Eq. (1), combined with the bounds on generalization error given below,
prove that AdaBoost is indeed a boosting algorithm in the sense that it canrelfictenvert
a weak learning algorithm (which can always generate a hypothesis with aetgakfor any
distribution) into a strong learning algorithm (which can generate a hypothasiswiarbitrarily
low error rate, given sufficient data).

0O 5 10 15 20 25 30 0O 5 10 15 20 25 30
boosting stumps boosting C4.5

Figure 3: Comparison of C4.5 versus boosting stumps and boosting C4.5 on a set of 27 benchmark
problems as reported by Freund and Schapire [21]. Each point in each scattegwstthe test

error rate of the two competing algorithms on a single benchmarkyidw®rdinate of each point

gives the test error rate (in percent) of C4.5 on the given benchmark, andciherdinate gives

the error rate of boosting stumps (left plot) or boosting C4.5 (right plot). All erteisrhave been
averaged over multiple runs.

Generalization error

Freund and Schapire [23] showed how to bound the generalization error of the final hypathesi
terms of its training error, the sample sizethe VC-dimensior of the weak hypothesis space and
the number of boosting rounds (The VC-dimension is a standard measure of the “complexity”
of a space of hypotheses. See, for instance, Blumer et al. [5].) Specifibajyused techniques
from Baum and Haussler [4] to show that the generalization error, with high ipitiipas at most

Pr[H(z) #]+ 0 (@)

wherePr [-] denotes empirical probability on the training sample. This bound suggests that boost-
ing will overfit if run for too many rounds, i.e., a8 becomes large. In fact, this sometimes does
happen. However, in early experiments, several authors [9, 15, 36] observeitalyghat boost-
ing often doesot overfit, even when run for thousands of rounds. Moreover, it was observed that
AdaBoost would sometimes continue to drive down the generalization error la@rgledttraining
error had reached zero, clearly contradicting the spirit of the bound abovendtance, the left
side of Fig. 2 shows the training and test curves of running boosting on top of Quinlan’s C4.5
decision-tree learning algorithm [37] on the “letter” dataset.

In response to these empirical findings, Schapire et al. [41], following the efdskrtlett [2],
gave an alternative analysis in terms of tnarginsof the training examples. The margin of

5

16 35
B R
N AR f< ¥
14 Fi B
30 ; R
I T T - : *. .
T VI 3
12 ; * Lo B B BB B
25 % 5 g8 o
10 I o 15| /./“,.”lr
5 5 o R I
w 8 1 20 e
B3 el B3 - -
6 B K] /J. - BRI X A
) 15 i = /T\//,' —
B R e
2 P o T A
AdaBoost —+— g i 4 AdaBoost —+—
Sleeping-experts ---x--- 10 - Sleeping-experts --->---
2 3 Rocchio - / Rocchio ---%--
Naive-Bayes - Naive-Bayes -
PITFIDF --m-- 4 PITFIDF --m—
0 . n 5 . . | .
3 4 5 6 4 6 8 10 12 14 16 18 20
Number of Classes Number of Classes

Figure 4: Comparison of error rates for AdaBoost and four other text categorizagtrds
(naive Bayes, probabilistic TF-IDF, Rocchio and sleeping experts) as egpbyt Schapire and
Singer [43]. The algorithms were tested on two text corpora — Reuters newasticies (left)
and AP newswire headlines (right) — and with varying numbers of class labildiaated on the
x-axis of each figure.

example(x, y) is defined to be
Y Z atht(x)
S —
> o
t
It is a number if—1, +1] which is positive if and only i correctly classifies the example. More-
over, the magnitude of the margin can be interpreted as a measure of confiddrepradiction.

Schapire et al. proved that larger margins on the training set translate sutperior upper bound
on the generalization error. Specifically, the generalization erronsoat

Pr [margin(z, y) < 0] + O (\/ %) (3)

for anyf > 0 with high probability. Note that this bound is entirely independerit ofhe number
of rounds of boosting. In addition, Schapire et al. proved that boosting is particulgngssive at
reducing the margin (in a quantifiable sense) since it concentrates on the exantipke smallest
margins (whether positive or negative). Boosting’s effect on the margins caaebeempirically,
for instance, on the right side of Fig. 2 which shows the cumulative distributiomaogins of the
training examples on the “letter” dataset. In this case, even aftdrdheng error reaches zero,
boosting continues to increase the margins of the training examples effectingspmrding drop
in the test error.

Attempts (not always successful) to use the insights gleaned from the theoryghsave
been made by several authors [7, 27, 34].

The behavior of AdaBoost can also be understood in a game-theoretic setting ascekglore
Freund and Schapire [22, 24] (see also Grove and Schuurmans [27] and Breimémg@&j}icular,
boosting can be viewed as repeated play of a certain game, and AdaBoost cawbédshe a

(2)

6

special case of a more general algorithm for playing repeated games and for aebxsulving
a game. This also shows that boosting is closely related to linear progrgnamd online learning.

Relation to support-vector machines

The margin theory points to a strong connection between boosting and the support-\zdiores
of Vapnik and others [6, 12, 47]. To clarify the connection, suppose that we have almauy f
the weak hypotheses that we want to combine and are only interested in choosingfibeotse
a;. One reasonable approach suggested by the analysis of AdaBoost’s generalizatigter
choose the coefficients so that the bound given in Eq. (3) is minimized. In partisulgose
that the first term is zero and let us concentrate on the second term so tlaae \@fectively
attempting to maximize theinimummargin of any training exampfeTo make this idea precise,
let us denote the vector of weak-hypothesis predictions associated with the exampldy
h(z) = (hi(x), he(z), ..., hy(x)) which we call thenstance vectoand the vector of coefficients
by a = (ay, ay, ..., ay) which we call theweight vector Using this notation and the definition
of margin given in Eq. (2) we can write the goal of maximizing the minimum maagin

~h(z:))y;
max min (& By

e S INTTYE]])

where, for boosting, the norms in the denominator are defined as:

lele =3 feal, |h(z)l|o = max |hy(z)] .
t

(When theh,’s all have rangg —1, +1}, ||h(z)||~ is simply equal td..)
In comparison, the explicit goal of support-vector machines is to maximize a aini@rgin
of the form described in EqQ. (4), but where the norms are instead Euclidean:

||a||2ﬁﬁ, I =[S el

Thus, SVM’s use thé, norm for both the instance vector and the weight vector, while AdaBoost
uses theé,, norm for the instance vector aidnorm for the weight vector.

When described in this manner, SVM and AdaBoost seem very similar. Howzere are
several important differences:

¢ Different norms can result in very different margins. The difference between the norms
¢4, ¢5 and/,, may not be very significant when one considers low dimensional spaces. How-
ever, in boosting or in SVM, the dimension is usually very high, often in theiongl or
more. In such a case, the difference between the norms can result irakge\differences

10f course, AdaBoost does not explicitly attempt to maximize the minimaigin. Nevertheless, Schapire
et al.'s [41] analysis suggests that the algorithm does try to make #ngims of all the training examples as large
as possible, so in this sense, we can regard this maximum minimal maggiittan as an illustrative approximation
of AdaBoost. In fact, algorithms that explicitly attempt to maximizeéimial margin have not been experimentally as
successful as AdaBoost [7, 27].

in the margin values. This seems to be especially so when there are aaly releévant
variables so thadx can be very sparse. For instance, suppose the weak hypotheses all have
range{—1, +1} and that the labe} on all examples can be computed by a majority vote of

k of the weak hypotheses. In this case, it can be shown that if the number of releait
hypotheseg: is a small fraction of the total number of weak hypotheses then the margin
associated with AdaBoost will be much larger than the one associated wpittort vector
machines.

e The computation requirements are different. The computation involved in maximizing
the margin is mathematical programming, i.e., maximizing a mathematipged€sion given
a set of inequalities. The difference between the two methods in this reghat SVM cor-
responds tajuadratic programmingwhile AdaBoost corresponds only iaear program-
ming (In fact, as noted above, there is a deep relationship between AdaBoolsheard
programming which also connects AdaBoost with game theory and online learning [22].)

e A different approach is used to search efficiently in high dimensioal space.Quadratic
programming is more computationally demanding than linear programming. Howesey, t
is a much more important computational difference between SVM and boosting laigerit
Part of the reason for the effectiveness of SVM and AdaBoost is that theyffiear Iclassi-
fiers for extremely high dimensional spaces, sometimes spaces of infinitesianeWhile
the problem of overfitting is addressed by maximizing the margin, the computagicial
lem associated with operating in high dimensional spaces remains. Supgortrmechines
deal with this problem through the method larnelswhich allow algorithms to perform
low dimensional calculations that are mathematically equivalent to ineiugts in a high
dimensional “virtual” space. The boosting approach is instead to engyksdy search
from this perspective, the weak learner is an oracle for finding coordinatgs bthat have
a non-negligible correlation with the labgl The reweighting of the examples changes the
distribution with respect to which the correlation is measured, thus guideng€ak learner
to find different correlated coordinates. Most of the actual work involvepiplying SVM
or AdaBoost to specific classification problems has to do with selectingothrepriate ker-
nel function in the one case and weak learning algorithm in the other. As kenteisesak
learning algorithms are very different, the resulting learning algorithrasllysoperate in
very different spaces and the classifiers that they generate are eytokfiezent.

Multiclass classification

So far, we have only considered binary classification problems in which thesgmadlistinguish
between only two possible classes. Many (perhaps most) real-worldriggrroblems, however,
aremulticlasswith more than two possible classes. There are several methods of extemtding A
Boost to the multiclass case.

The most straightforward generalization [23], called AdaBoost.M1, is adegdnztie the weak
learner is strong enough to achieve reasonably high accuracy, even on the tndmakidiss created
by AdaBoost. However, this method fails if the weak learner cannot achiéeast 50% accuracy
when run on these hard distributions.

1OT 197

4:1/0.27,4/0.17 5:0/0.26,5/0.17 7:4/0.25,9/0.18 1:9/0.15,7/0.15 2:0/0.29,2/0.19 9:7/0.25,9/0.1

27101749

3:5/0.28,3/0.28 9:7/0.19,9/0.19 4:1/0.23,4/0.23 4:1/0.21,4/0.20 4:9/0.16,4/0.16 9:9/0.17,4/0.1

1177497

4:4/0.18,9/0.16 4:4/0.21,1/0.18 7:7/0.24,9/0.21 9:9/0.25,7/0.22 4:4/0.19,9/0.16 9:9/0.20,7/0.1

Figure 5: A sample of the examples that have the largest weight on an OCR tasjoaed

by Freund and Schapire [21]. These examples were chosen after 4 rounds of boosting (top
line), 12 rounds (middle) and 25 rounds (bottom). Underneath each image is a line ofrthe for
d:ty Jwy,ly/we, Whered is the label of the examplé, and/, are the labels that get the highest and
second highest vote from the combined hypothesis at that point in the run of the algorithim, and

wo, are the corresponding normalized scores.

For the latter case, several more sophisticated methods have been dev&lgsigenerally
work by reducing the multiclass problem to a larger binary problem. Schapire agdrSi[42]
algorithm AdaBoost.MH works by creating a set of binary problems, for each examatel
each possible labej, of the form: “For example:, is the correct labe} or is it one of the other
labels?” Freund and Schapire’s [23] algorithm AdaBoost.M2 (which is a spexsal @f Schapire
and Singer’s [42] AdaBoost.MR algorithm) instead creates binary problems, dbree@mpler:
with correct labely and eachincorrectlabely’ of the form: “For example:, is the correct labej
ory'?”

These methods require additional effort in the design of the weak learning algowttdif-
ferent technique [39], which incorporates Dietterich and Bakiri’s [14] metbfagtror-correcting
output codes, achieves similar provable bounds to those of AdaBoost.MH and AdaBoost.M2, but
can be used with any weak learner which can handle simple, binary labebed$zhapire and
Singer [42] give yet another method of combining boosting with error-correcting output.codes

Experiments and applications

Practically, AdaBoost has many advantages. It is fast, simple andtegspgram. It has no
parameters to tune (except for the number of rolii)d It requires no prior knowledge about
the weak learner and so can be flexibly combined aitlg method for finding weak hypotheses.
Finally, it comes with a set of theoretical guarantees given sufficieatalad a weak learner that
can reliably provide only moderately accurate weak hypotheses. This is anghifid set for the
learning-system designer: instead of trying to design a learning algorithnstheturate over the
entire space, we can instead focus on finding weak learning algorithms that edlyaiee better
than random.

On the other hand, some caveats are certainly in order. The actual perforofidoosting on
a particular problem is clearly dependent on the data and the weak learner.t€ungith theory,
boosting can fail to perform well given insufficient data, overly compleakveypotheses or weak
hypotheses which are too weak. Boosting seems to be especially susceptibketflB8b(more
on this later).

AdaBoost has been tested empirically by many researchers, including [3, 23, B3, 36, 45].
For instance, Freund and Schapire [21] tested AdaBoost on a set of UCI benchnaesdtsi§25]
using C4.5 [37] as a weak learning algorithm, as well as an algorithm which finbesih&decision
stump” or single-test decision tree. Some of the results of these experimestsaavn in Fig. 3.
As can be seen from this figure, even boosting the weak decision stumps caty gstalas
good results as C4.5, while boosting C4.5 generally gives the decision-tree algostgnifigant
improvement in performance.

In another set of experiments, Schapire and Singer [43] used boosting for text caggori
tasks. For this work, weak hypotheses were used which test on the presence oe absenord
or phrase. Some results of these experiments comparing AdaBoost to four other me¢hods a
shown in Fig. 4. In nearly all of these experiments and for all of the performaeasures tested,
boosting performed as well or significantly better than the other methods testestii®) has also
been applied to text filtering [44], “ranking” problems [19] and classificatiabf@ms arising in
natural language processing [1, 28].

The generalization of AdaBoost by Schapire and Singer [42] provides an interpnetdti
boosting as a gradient-descent method. A potential function is used in their algtoithsso-
ciate a cost with each example based on its current margin. Using this pbfenttion, the
operation of AdaBoost can be interpreted as a coordinate-wise gradient desttemispace of
linear classifiers (over weak hypotheses). Based on this insight, one dgn dégorithms for
learning popular classification rules. In recent work, Cohen and Singer [11] dHoweto apply
boosting to learn rule lists similar to those generated by systems IRBER [10], IREP [26] and
C4.5rules [37]. In other work, Freund and Mason [20] showed how to apply boosting todearn
generalization of decision trees called “alternating trees.”

A nice property of AdaBoost is its ability to identifyutliers, i.e., examples that are either
mislabeled in the training data, or which are inherently ambiguous and hargttoae. Because
AdaBoost focuses its weight on the hardest examples, the examples with the higlggdtoiten
turn out to be outliers. An example of this phenomenon can be seen in Fig. 5 takearfro@R
experiment conducted by Freund and Schapire [21].

When the number of outliers is very large, the emphasis placed on the hard exaaples

10

become detrimental to the performance of AdaBoost. This was demonstratecbweigcingly
by Dietterich [13]. Friedman et al. [25] suggested a variant of AdaBoos¢dcabentle AdaBoost”
which puts less emphasis on outliers. In recent work, Freund [18] suggested aalgtréhm,
called “BrownBoost,” which takes a more radical approach that de-emg@sasitliers when it
seems clear that they are “too hard” to classify correctly. This dlgoris an adaptive version of
Freund’s [17] “boost-by-majority” algorithm. This work, together with Schapire’s 0tk on
“drifting games,” reveal some interesting new relationships between bgo&rownian motion,
and repeated games while raising many new open problems and directions forégstaech.

References

[1] Steven Abney, Robert E. Schapire, and Yoram Singer. Boosting applied togegd PP
attachment. IfProceedings of the Joint SIGDAT Conference on Empirical Methods in Natural
Language Processing and Very Large Corpdt899.

[2] Peter L. Bartlett. The sample complexity of pattern classificatth neural networks: the
size of the weights is more important than the size of the netwtiEE Transactions on
Information Theory44(2):525-536, March 1998.

[3] Eric Bauer and Ron Kohavi. An empirical comparison of voting classificasilgorithms:
Bagging, boosting, and variantslachine Learningto appear.

[4] Eric B. Baum and David Haussler. What size net gives valid genetaiivaNeural Compu-
tation, 1(1):151-160, 1989.

[5] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K.nWi#n. Learn-
ability and the Vapnik-Chervonenkis dimensiadournal of the Association for Computing
Machinery 36(4):929-965, October 1989.

[6] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training ator for
optimal margin classifiers. IRroceedings of the Fifth Annual ACM Workshop on Computa-
tional Learning Theorypages 144-152, 1992.

[7] Leo Breiman. Arcing the edge. Technical Report 486, Statistics Depattideiversity of
California at Berkeley, 1997.

[8] Leo Breiman. Prediction games and arcing classifiers. TechniqadiRB04, Statistics De-
partment, University of California at Berkeley, 1997.

[9] Leo Breiman. Arcing classifiersThe Annals of Statistic26(3):801-849, 1998.

[10] William Cohen. Fast effective rule induction. Rroceedings of the Twelfth International
Conference on Machine Learningages 115-123, 1995.

[11] William W. Cohen and Yoram Singer. A simple, fast, and effective legener. InProceed-
ings of the Sixteenth National Conference on Artificial Intelliged®&®9.

11

[12] Corinna Cortes and Vladimir Vapnik. Support-vector network$dachine Learning
20(3):273-297, September 1995.

[13] Thomas G. Dietterich. An experimental comparison of three methods for aotisy en-
sembles of decision trees: Bagging, boosting, and randomizatitecchine Learning to
appeatr.

[14] Thomas G. Dietterich and Ghulum Bakiri. Solving multiclass learning probleia error-
correcting output codesJournal of Artificial Intelligence Researcl2:263—-286, January
1995.

[15] Harris Drucker and Corinna Cortes. Boosting decision treeAdvances in Neural Infor-
mation Processing Systemgfages 479-485, 1996.

[16] Harris Drucker, Robert Schapire, and Patrice Simard. Boosting peafarenin neural net-
works. International Journal of Pattern Recognition and Artificial Intelligendg4):705—
719, 1993.

[17] Yoav Freund. Boosting a weak learning algorithm by majohitiormation and Computatign
121(2):256-285, 1995.

[18] Yoav Freund. An adaptive version of the boost by majority algorithnProceedings of the
Twelfth Annual Conference on Computational Learning Theb®99.

[19] Yoav Freund, Raj lyer, Robert E. Schapire, and Yoram Singer. An efficientibgadgorithm
for combining preferences. Machine Learning: Proceedings of the Fifteenth International
Conference1998.

[20] Yoav Freund and Llew Mason. The alternating decision tree learning dguorin Machine
Learning: Proceedings of the Sixteenth International Confereh289. to appear.

[21] Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithita-1
chine Learning: Proceedings of the Thirteenth International Conferepages 148-156,
1996.

[22] Yoav Freund and Robert E. Schapire. Game theory, on-line prediction and boosting. |
Proceedings of the Ninth Annual Conference on Computational Learning T,Ipswgs 325—
332, 1996.

[23] Yoav Freund and Robert E. Schapire. A decision-theoretic generalizationliofeolearning
and an application to boostinglournal of Computer and System Sciend#x1):119-139,
August 1997.

[24] Yoav Freund and Robert E. Schapire. Adaptive game playing using multipBoagights.
Games and Economic Behavjoo appear.

[25] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive lagisgression: a sta-
tistical view of boosting. Technical Report, 1998.

12

[26] Johannes Furnkranz and Gerhard Widmer. Incremental reduced error prunivigchime
Learning: Proceedings of the Eleventh International Confergpeges 70-77, 1994.

[27] Adam J. Grove and Dale Schuurmans. Boosting in the limit: Maximizing thegim of
learned ensembles. FProceedings of the Fifteenth National Conference on Artificial Intelli-
gence 1998.

[28] Masahiko Haruno, Satoshi Shirai, and Yoshifumi Ooyama. Using decisies toeconstruct
a practical parseMachine Learning34:131-149, 1999.

[29] Jeffrey C. Jackson and Mark W. Craven. Learning sparse perceptrohdvéimces in Neural
Information Processing Systemsfages 654—660, 1996.

[30] Michael Kearns and Leslie G. Valiant. Learning Boolean formulae orefiaiittomata is
as hard as factoring. Technical Report TR-14-88, Harvard University Al@mputation
Laboratory, August 1988.

[31] Michael Kearns and Leslie G. Valiant. Cryptographic limitations omigey Boolean formu-
lae and finite automatalournal of the Association for Computing Machinefst (1):67-95,
January 1994.

[32] Michael J. Kearns and Umesh V. Vaziraiin Introduction to Computational Learning The-
ory. MIT Press, 1994.

[33] Richard Maclin and David Opitz. An empirical evaluation of bagging and hagstIn
Proceedings of the Fourteenth National Conference on Atrtificial Intelliggrages 546551,
1997.

[34] Llew Mason, Peter Bartlett, and Jonathan Baxter. Direct optinmimaif margins improves
generalization in combined classifiers. Technical report, Deparment tdfri8y&ngineering,
Australian National University, 1998.

[35] C. J. Merz and P. M. Murphy. UCI repository of machine learning databases, 1998.
www.ics.uci.edutmlearn/MLRepository.html.

[36] J. R. Quinlan. Bagging, boosting, and C4.5. Rroceedings of the Thirteenth National
Conference on Atrtificial Intelligen¢@ages 725-730, 1996.

[37] J. Ross QuinlanC4.5: Programs for Machine Learningiorgan Kaufmann, 1993.

[38] Robert E. Schapire. The strength of weak learnabilMachine Learning 5(2):197-227,
1990.

[39] Robert E. Schapire. Using output codes to boost multiclass learning probleriachne
Learning: Proceedings of the Fourteenth International Conferepages 313-321, 1997.

[40] Robert E. Schapire. Drifting games. Rroceedings of the Twelfth Annual Conference on
Computational Learning Theoyy999.

13

[41] Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Bpakgé mar-
gin: A new explanation for the effectiveness of voting metho@ise Annals of Statisti¢cs
26(5):1651-1686, October 1998.

[42] Robert E. Schapire and Yoram Singer. Improved boosting algorithms using confideede
predictions. InProceedings of the Eleventh Annual Conference on Computational Learning
Theory pages 80-91, 1998. To appdadachine Learning

[43] Robert E. Schapire and Yoram Singer. BoosTexter: A boosting-based systent fratégo-
rization. Machine Learningto appeatr.

[44] Robert E. Schapire, Yoram Singer, and Amit Singhal. Boosting and Rocchio ppliext
filtering. InSIGIR '98: Proceedings of the 21st Annual International Conference on Research
and Development in Information Retrieyab98.

[45] Holger Schwenk and Yoshua Bengio. Training methods for adaptive boosting of neural net-
works. InAdvances in Neural Information Processing System$agfes 647—-653, 1998.

[46] L. G. Valiant. A theory of the learnablesCommunications of the ACN27(11):1134-1142,
November 1984.

[47] Vladimir N. Vapnik. The Nature of Statistical Learning Theor$pringer, 1995.

14

